On Higher Eta-Invariants and Metrics of Positive Scalar Curvature
نویسندگان
چکیده
Let N be a closed connected spin manifold admitting one metric of positive scalar curvature. In this paper we use the higher eta-invariant associated to the Dirac operator on N in order to distinguish metrics of positive scalar curvature on N . In particular, we give sufficient conditions, involving π1(N) and dim N , for N to admit an infinite number of metrics of positive scalar curvature that are nonbordant. Mathematics Subject Classifications (2000): 55N22, 19L41.
منابع مشابه
Positive scalar curvature, diffeomorphisms and the Seiberg–Witten invariants
We study the space of positive scalar curvature (psc) metrics on a 4–manifold, and give examples of simply connected manifolds for which it is disconnected. These examples imply that concordance of psc metrics does not imply isotopy of such metrics. This is demonstrated using a modification of the 1–parameter Seiberg–Witten invariants which we introduced in earlier work. The invariant shows tha...
متن کاملGroups with torsion, bordism and rho-invariants
Let Γ be a discrete group, and let M be a closed spin manifold of dimension m > 3 with π1(M) = Γ. We assume that M admits a Riemannian metric of positive scalar curvature. We discuss how to use the L-rho invariant ρ(2) and the delocalized eta invariant η associated to the Dirac operator on M in order to get information about the space of metrics with positive scalar curvature. In particular ...
متن کامل2 Paolo Piazza and
Let Γ be a discrete group, and let M be a closed spin manifold of dimension m > 3 with π1(M) = Γ. We assume that M admits a Riemannian metric of positive scalar curvature. We discuss how to use the L-rho invariant ρ(2) and the delocalized eta invariant η associated to the Dirac operator on M in order to get information about the space of metrics with positive scalar curvature. In particular ...
متن کاملar X iv : m at h / 06 04 31 9 v 4 [ m at h . G N ] 2 1 Fe b 20 07 Groups with torsion , bordism and rho - invariants
Let Γ be a discrete group, and let M be a closed spin manifold of dimension m > 3 with π1(M) = Γ. We assume that M admits a Riemannian metric of positive scalar curvature. We discuss how to use the L-rho invariant ρ(2) and the delocalized eta invariant η associated to the Dirac operator on M in order to get information about the space of metrics with positive scalar curvature. In particular ...
متن کاملar X iv : m at h / 06 04 31 9 v 2 [ m at h . G N ] 2 6 Se p 20 06 Groups with torsion , bordism and rho - invariants
Let Γ be a discrete group, and let M be a closed spin manifold of dimension m > 3 with π1(M) = Γ. We assume that M admits a Riemannian metric of positive scalar curvature. We discuss how to use the L-rho invariant ρ(2) and the delocalized eta invariant η associated to the Dirac operator on M in order to get information about the space of metrics with positive scalar curvature. In particular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002